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Knowing the extent and environmental drivers of forests is 
key to successfully restore degraded ecosystems, and to miti-
gate climate change and desertification impacts using tree 
planting. Water availability is the main limiting factor for the 
development of forests in drylands, yet the importance of 
groundwater resources and palaeoclimate as drivers of their 
current distribution has been neglected. Here we report that 
mid-Holocene climates and aquifer trends are key predic-
tors of the distribution of dryland forests worldwide. We also 
updated the global extent of dryland forests to 1,283 million 
hectares and showed that failing to consider past climates 
and aquifers has resulted in ignoring or misplacing up to 130 
million hectares of forests in drylands. Our findings highlight 
the importance of a wetter past and well-preserved aquifers 
to explain the current distribution of dryland forests, and can 
guide restoration actions by avoiding unsuitable areas for tree 
establishment in a drier world.

Dryland forests are essential for the survival of the poorest 
human populations on our planet, which strongly rely on woody 
vegetation for obtaining fuel, shelter and food1. Reductions in soil 
water availability2 associated with forecasted increases in arid-
ity3 and in the number and duration of droughts4 are expected to 
reduce the area of drylands capable of supporting forest ecosys-
tems5. Despite this, many dryland regions, especially in China6 and 
Africa7, are important candidates for global ecosystem restoration 
initiatives associated with the UN Decade of Ecosystem Restoration 
2021–20308. Trees in drylands typically use more water than grasses 
or shrubs9, hence afforestation may reduce water availability for 
essential human activities such as agriculture10, resulting in water 
shortages that could lead to local and regional conflicts11,12. Because 
of this, identifying those drylands capable of supporting forests is 
essential to guide current and future restoration efforts so that they 
can maximize the multiple benefits of forests while minimizing the 
risk of water scarcity in these areas.

Despite important recent advances in understanding the distri-
bution of dryland forests13, their definitive extent is far from being 
fully understood. For example, a recent study14 found an unex-
pected number of trees in the Sahel, where numerous efforts involv-
ing the restoration of complex ecosystems are underway under the 
umbrella of Africa’s Great Green Wall15. We posit that current dis-
crepancies in forest extent are based on the lack of consideration 

of key factors influencing the development of trees in drylands. In 
contrast to forests located in humid areas, the distribution dryland 
forests is highly constrained by their typically low water availability 
and high evapotranspiration rates16. However, not all current dry-
lands have experienced the same dry climate over millennia, and 
many of them come from a wetter past17. Palaeoclimatic conditions 
are known to influence the current structure and functioning of ter-
restrial ecosystems18,19 and may have influenced the establishment 
of dryland forests over millennia20. Locations with wetter past con-
ditions might thus have allowed the establishment of dryland for-
ests, which otherwise might not exist under today’s drier climates. 
However, empirical evidence supporting this is lacking. Similarly, 
the presence of local shallow aquifers—many of those located in 
drylands are relics from a wetter past—influences 22–32% of the 
global land surface21 and has been found to influence the distribu-
tion of forests in particular drylands22. Remarkably, the role of past 
climates and groundwater resources as predictors of the current dis-
tribution of dryland forests at the global scale is poorly understood 
and has not been evaluated yet.

Here we combine a unique very high-resolution (<1 m per pixel) 
imagery dataset of 94,352 dryland plots (0.5 ha), with informa-
tion on climate23, aquifer trends24, soil properties25, environmental 
factors, land use maps26,27 and vegetation height28 to: (1) quantify 
the relative importance of current and past (mid-Holocene; 6,000 
years before the present) climate, aquifers and other key environ-
mental predictors (Supplementary Table 1) associated with the cur-
rent distribution of forests across global drylands; (2) provide an 
accurate and updated distribution of dryland forests worldwide; 
(3) compare the current extent of dryland forests with maps of 
tree restoration potential29; and (4) forecast the future (2081–2100) 
extent of dryland forests according to multiple socio-economic and 
climate change scenarios. These are fundamental steps to advance 
our knowledge about the extent and predictors of forest ecosys-
tems across global drylands, which cover ~41% of the Earth’s land 
surface30, to maximize the socio-economic and ecological benefits 
of afforestation efforts, and to inform policies to mitigate climate 
change and desertification.

In general, mid-Holocene precipitation and temperature (Fig. 1) 
and climatic legacies (differences in precipitation and temperature 
between past and current climates) predicted a unique and signifi-
cant proportion of the variation in the distribution of current forests 
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in drylands (variation partitioning analyses; Methods and Fig. 1a). 
These findings were particularly evident in semi-arid regions, which 
had a wetter climate in the mid-Holocene than today31 (Extended 

Data Fig. 1). Similar results were found when using an alternative 
machine-learning approach (random forest modelling; Methods)  
to quantify the importance of the variables studied (Fig. 1b). Our 
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Fig. 1 | relative contribution of past climate (mid-Holocene, 6,000 years before the present), current climate and other environmental variables as 
drivers of the current distribution of dryland forests worldwide. a, Results from variation partitioning modelling aiming to identify the percentage of the 
variance of forest distribution explained by each predictor. b, Results from random forest analysis aiming to identify the top 14 significant (P < 0.01; for 
one-sided testing) variables regulating forest distribution across global drylands. An increase in the percentage of mean squared error (MSE) in variables 
equals more importance. Acronyms are available in Supplementary Table 1.
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analyses show that locations with higher increases in precipitation 
since the mid-Holocene, particularly in the warmest, driest and 
coldest quarters, hold more forests now than should be expected 
according to their current climatic conditions. Moreover, areas that 
have suffered from larger increases in temperature over the past 
6,000 years support fewer forests today. Our results thus provide 
new evidence on the importance of past climates as a major predic-
tor of the current distribution of dryland forests worldwide.

The presence and evolution of aquifers (measured by water 
thickness over the period 2002–2017; Methods) was also a key fac-
tor explaining the current distribution of dryland forests (Fig. 1b). 
Almost half of the forests in drylands, 613 million hectares (Mha), 
are growing over aquifers where the piezometric level has declined21 
(Extended Data Fig. 2). These include forests found mainly in zones 
of eastern Brazil, central Canada, northern Mexico, southeast-
ern Russia and the southwestern United States of America. These 
areas may thus not be able to support forests in the future, given 
the enhanced aridity and the increased duration and intensity of 
drought periods expected for many of them5.

We found that drylands are covered by 1,283 ± 15 Mha of for-
ests, excluding tree plantations (Fig. 2). Forests occupy 717.8, 542.4, 
22.1 and 0.7 Mha of dry sub-humid, semi-arid, arid and hyper-arid 
areas, respectively, and represent ~19% of the surface of global dry-
lands. The confidence of these estimates was highest in areas with 
a high probability of finding forest (that is, the models agreed on 
areas of bare soil or very dense forests, such as the Sahara Desert 
or the forests in South America). In contrast, areas with low confi-
dence were those with low or medium probability (less than 50%, 
the threshold used to classify forest/non-forest; Extended Data 
Fig. 3). Compared with the most recent estimates available13,32, our 
estimates increase the global forest area in drylands by ~200 Mha. 
Even more importantly, our forest map changed the location of 
~33% of dryland forest area compared with the most recent global 
estimates13,32, suggesting that 1/3 of forests were misplaced by the 
most recent estimates (Extended Data Fig. 4). The main reasons for 
these differences are probably related to the modelling approach we 

used, which combines the explicit consideration of past climate and 
groundwater trends with high-resolution imagery and discarded 
areas covered by large shrubs (Methods).

To further illustrate the importance of past climates and aqui-
fers as drivers of the current distribution of forests in drylands, we 
located the extent of forests in drylands with or without consider-
ation of past climate and aquifer trends. The consensus between 
the forest maps considering or excluding climatic legacies and 
aquifer trends was 1,225 Mha (Fig. 3). The discrepancies in these 
maps added up to ~130 Mha, equivalent to 3.7 billion trees14 or the 
equivalent of the total area of France, Italy, the United Kingdom, 
Switzerland, the Netherlands and Belgium together. These discrep-
ancies were mainly located in areas where palaeoclimatic legacies 
were especially important, which include the Sahel, south Australia, 
Mexico and the southwestern United States (Fig. 3). The presence 
of many of these forests cannot simply be explained without con-
sidering palaeoclimates and aquifer trends. The importance of past 
climates as drivers of the distribution of current forests was more 
noticeable in semi-arid regions across the globe (Fig. 3), with over 
81 Mha of forests being neglected or misplaced by models based 
only on current climatic conditions. Over 31 Mha of these forests 
are moreover located in the transition between arid and semi-arid 
regions (aridity index (AI) = 0.2; AI, precipitation/potential evapo-
transpiration), which has recently been reported to be a threshold 
driving abrupt changes33 in multiple ecosystem attributes, includ-
ing a decline in vegetation cover and richness, across global dry-
lands34. Planting trees in these transitional regions should be done 
with extreme caution and even avoided where it could accelerate 
the depletion of groundwater resources and jeopardize water avail-
ability for other organisms and human uses, as is already occurring 
in areas where extensive afforestation programmes have been estab-
lished over the past decades, such as in the Chinese Loess Plateau10.

The existence of dryland forests may be explained by different 
causes. They can be relict forests where recruiting is being ham-
pered by current conditions, but their survival is not. If so, the trees 
in these areas would be old and simply a very long transient state 

Forest 

Non-forested areas

Non-dryland areas

Arid
(0.05 ≤ AI < 0.2)

Dry sub-humid
(0.5 ≤ AI < 0.65)

Hyper-arid
(AI < 0.05)

Semi-arid
(0.2 ≤ AI < 0.5)

0.7 Mha
22.1 Mha

542.4 Mha
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Fig. 2 | The distribution of forests across global drylands considering climate legacies (changes in climate over the past 6,000 years) and aquifer trends. 
Forest areas are those with a probability >50% according to the Random Forest approach used (Methods).
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towards conversion into a non-forested vegetation35. However, since 
the trees in these areas would be at least 6,000 years old and these 
ages are uncommon for many tree species, this cause can probably 
be overruled. A more plausible explanation is that forests in these 
areas are stable configurations that can survive and recruit under 
current conditions, even if they do so at the edge of their optimal 
environmental suitability. To check whether trees existed in the 
mid-Holocene in the locations where forests exist today, we explored 
data from LegacyPollen v.136, a harmonization of palaeo-pollen 
databases. We found pollen samples (n = 1,121) of tree species 
aged 5,000–7,000 years at 119 sites located in current dryland for-
ests from six large regions (Africa, Asia, eastern North America, 
Europe, South America and western North America; Extended Data 
Fig. 5a). The median of the percentage of pollen from tree species 
was more than 40% in these regions (Extended Data Fig. 5b), and 
samples with more than 5% tree species pollen were found in 93% 
of the cases (Asia 100%, Europe 100%, North America 100%, Africa 
67% and South America 96%). We observed a significant negative 
relationship between the percentage of tree species present in the 
pollen samples and aridity across Europe, eastern North America 
and western North America (Extended Data Fig. 5c). These find-
ings suggest that most dryland areas sustaining forests today already 
had a prevalence of forest vegetation in the mid-Holocene and that 
the dominance of tree species decreased as aridity increased back 

then (as it happens today). Although these findings cannot provide 
a definitive proof, they suggest the presence of hysteretic behav-
iour in dryland forests (that is, forests inherited from the past do 
not revert to non-forest states even when environmental condi-
tions suggest that this would be the most reasonable). This type of 
hysteretic behaviour has already been found in tropical forests37. If 
true for dryland forests, this would suggest the existence of some 
type of forest-specific stabilizing mechanism that allows forests 
to thrive in drylands. Potential stabilizing mechanisms include 
hydroclimatic feedbacks37 and the modification of the surrounding  
physical environment by trees38, which create suitable conditions  
for tree development.

By identifying climatic legacies and aquifers as important fac-
tors explaining the current distribution of forests across global 
drylands, our findings have important implications for their res-
toration. The comparison of the current forest extent in drylands, 
as revealed by our results, with tree restoration potential maps pro-
vided by Bastin et al.29 results in a consensus of 464 Mha of dryland 
forests with suitable conditions for tree planting (Fig. 4). These areas 
include, for example, the state of Texas (USA), northern Argentina, 
Paraguay and Bolivia, areas of central and western Sahel, north-
eastern Australia, southern Angola, northern Namibia, Botswana, 
Zimbabwe, Mozambique and southern Madagascar. In contrast, 
819 Mha of dryland forests revealed by our results are not included in 
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Fig. 3 | Comparison between the extent of forests calculated with and without considering the effects of climatic legacies and aquifer trends. Consensus 
areas are shown in yellow. Discrepancies in forest extent when considering climatic legacies (changes in climate over the past 6,000 years) and aquifer 
trends are shown in purple. Discrepancies in forest extent when considering current climate only are shown in red.
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the tree restoration potential maps. This is reasonable, as in most of 
these areas the capacity to accommodate more trees is very limited29. 
These include areas in northwest Mexico, Venezuela, Peru, Bolivia, 
Paraguay, eastern Brazil, southern Russia and Sudan. In addition, 
our results revealed 650 Mha of non-forest areas with potential for 
tree restoration29. These areas, which include southern Canada, 
northeastern Mexico, central Namibia, Argentina and Kazakhstan, 
need to be carefully studied locally to verify whether they are forest-
less due to unfavourable environmental conditions for tree develop-
ment (hence not suitable for afforestation programmes) or because 
of deforestation (hence suitable for restoration using trees).

In addition to considering where forests are found today, res-
toration actions involving tree planting must also consider future 
climatic conditions, as they will largely determine suitable areas 
for tree development in drylands, and thus suitable areas for these 
actions39. To gain insights into the potential future distribution of 
dryland forests, we rerun our model for forest extent consider-
ing both climatic legacies and projected climate data23 from the 
MIROC6 global climate model40. We used a combination of three 
shared socio-economic pathways (SSP) and representative con-
centration pathways (RCP) scenarios (1–2.6, 3–7.0 and 5–8.5) for 
these forecasts (Methods). To obtain a more realistic forecast, we 
also used projections of the extent of crop and urban land uses in 
the same three scenarios using the MIROC global climate model27 
(Methods). Our results indicate that about 11% of the current extent 
of dryland forests (~180 Mha) will be lost in the period 2081–2100 
under the SSP5-8.5 projection (Extended Data Fig. 6). At the same 
time, a total of 309 Mha (20% of the current extent of dryland for-
est) of new forests will appear in places not holding forests now 
(Extended Data Fig. 6). Comparing current and potential future for-
est extent, the areas most affected by forest loss are in eastern Brazil, 
central Canada and eastern Australia. The areas projected to have 
the greatest potential for new forests are in Africa.

In summary, our work provides novel evidence that past climates 
and aquifer trends are fundamental in explaining the current dis-
tribution of forests in global drylands and highlights those dryland 
regions that could foresee future losses and gains of forests under 
realistic socio-economic and climatic scenarios. The updated esti-
mations of the current and future extension and location of dry-
land forests provided can be used to improve the management and 
conservation of forests across drylands worldwide. Our results can 
also help to prioritize target areas for the establishment of forests in 
drylands, and to select alternative species (for example, grasses or 
shrubs) in areas where future climatic conditions and/or depleted 
aquifers may not allow the establishment of trees.

Methods
Definition of forest. We followed the definition of the Food and Agriculture 
Organization of the United Nations (FAO), which considers forests as ecosystems 
with >10% tree cover, >5 m in height and over 0.5 ha located in areas not 
predominantly used for agriculture or urban land use41.

Datasets for climatic and other environmental drivers. To delimit the extent 
of global drylands, we followed the United Nations Convention to Combat 
Desertification and the Convention on Biological Diversity42, which defined 
drylands as those areas with AI < 0.65. According to this definition, drylands can 
be divided into four areas: hyper-arid (AI < 0.05), arid (0.05 ≤ AI < 0.2), semi-arid 
(0.2 ≤ AI < 0.5) and dry sub-humid (0.5 ≤ AI < 0.65). Here we used the aridity zone 
map created by the United Nations Environment Programme (UNEP)43.

We used a total of 19 standardized climatic variables (Supplementary Table 1),  
which were obtained for all the sites surveyed from Worldclim Global Climate 
Data23. We used data at a 2.5 min resolution (~4.5 km at the equator) because 
they are available for both the current and past climate of the mid-Holocene 
(~6,000 years ago) so that comparisons of bioclimatic data at different periods can 
be done. We focused on mid-Holocene (that is, 6,000 years before the present) 
climates because many current drylands were wetter during that period31. The 
overall accuracy of the Worldclim climatic models was very high for temperature 
variables23. These variables had an overall correlation coefficient (between 
estimated and observed values) of ≥0.99 and an average root-mean-square error 
between 1.1 °C and 1.4 °C. Precipitation in drylands can be highly variable in time 

Climatic legacy forest 

Non-forested areas

Non-dryland areas

Consensus tree potential 
and climatic legacy forest 

Tree potential outside 
the climatic legacy forest

10         25%

Tree potential outside 
climatic legacy forest

Consensus tree potential 
and climatic legacy forest

650
Mha

464
Mha 819

Mha

Fig. 4 | Comparison between the calculated forest extent considering climate legacies and aquifers and the potential areas for restoring trees.  
The comparison is based on results shown in Fig. 2 and tree restoration potential identified by Bastin et al.29. Forest areas matching those with tree 
restoration potential are in yellow. Areas with a blue gradient show the potential for tree cover restoration in non-forested areas (between 10% and 25%). 
Areas with no restoration potential and already containing forests are in green. Examples of areas with different restoration potential are shown in the inset 
circles. Map data: Google, Maxar Technologies.

NATurE PlANTS | www.nature.com/natureplants

http://www.nature.com/natureplants


Letters NaturE PlaNts

and space, with some regions showing abrupt changes across spatial scales. In 
general, the prediction error increased with station elevation and distance to the 
nearest neighbouring station (in the training set) for all variables. Generalized 
additive models of cross-validation errors showed that higher elevations tended 
to be associated with lower interpolation accuracy, even after accounting for the 
effects of isolation and spatial variation in errors, although this effect differed 
between variables.

We also gathered soil moisture data from TerraClimate44, which is composed of 
data from Worldclim23 and the Japanese 55-year Reanalysis (JRA55)45; soil organic 
carbon stock, texture (sand content) and pH from Soilgrids25; albedo from MODIS/
Terra MCD43A3 Version 6 at 500 m pixel resolution46; elevation and slope from the 
Advanced Land Observation Satellite (ALOS)47; evapotranspiration from MODIS/
Terra MOD16A2 Version 6 at 500 m pixel resolution48; and equivalent liquid water 
thickness of aquifers by measuring monthly changes in gravity from the Gravity 
Recovery and Climate Experiment (GRACE)49.

Automatic identification of forest plots. To avoid the low accuracy of 
classifications using coarse-resolution images13,14 and the subjectivity of using 
multiple human operators50, we gathered a new high-resolution image dataset 
and used an automatic classification system to distinguish between forest and 
non-forest plots on the basis of the Convolutional Neural Network (CNN) 
model, a type of artificial intelligence method inspired by the human brain51. This 
model can minimize the risk of uncertainty in results but not eliminate it, as the 
deep learning-based model has been trained with user-provided labels expert in 
identifying forests in satellite images but is not completely infallible.

We first compiled an updated, globally consistent and accurate dataset of 
precise locations of forest and non-forest plots. On the basis of the valuable 
information from the 213,795 0.5 ha plots provided by the Global Drylands 
Assessment13, where 239 operators and FAO staff participated in the task, we 
selected 94,352 plots where very high-resolution Google Earth images (less than 
1 m per pixel, that is, eye altitude of ~150 m and zoom level 19) were available 
between 1 and 13 December 2017. Then, the images of these selected plots were 
automatically classified into forest and non-forest using the CNN-based model.

To train the CNN-based model to differentiate forest from non-forest images, 
we built a new auxiliary training dataset by regrouping the 45 categories of the 
NWPU-RESISC45 benchmark database52 (for example, farmland, forest, mountain, 
beach, island, lake, river, airport, bridge, church, chaparral and ship) into two 
classes: forest and non-forest. Our forest class was obtained by grouping together 
two categories of the NWPU-RESISC45 database: forest (mainly close forest 
images) and chaparral (mainly open forest images). To fulfill FAO’s definition 
of forest in these classes, we manually removed all images with less than 10% of 
canopy cover and those including some portion of evident human activity (for 
example, infrastructures, tree and non-tree croplands, urban settlements, urban 
forests and so on). As a result, our new forest class contained 681 images that 
fulfilled FAO’s criteria, and our non-forest class contained 30,100 images from 
all remaining 43 categories of the NWPU-RESISC45 database (for example, 
700 images per category; Supplementary Data 1). We used the Inception v.3 
architecture53, one of the most accurate CNN models being used nowadays, and 
two optimization techniques: (1) data augmentation and (2) transfer learning. 
Data augmentation involves artificially increasing the number of independent 
samples in the training dataset by applying specific transformations to the images 
(for example, flipping 180°, margin cropping 10%, scaling up the size of images 
by 10%, brightening pixel level up to 50% and darkening pixel level up to 50%). 
Transfer learning involves using the knowledge acquired from a previous problem 
to solve a new problem. Instead of starting the learning from scratch, with transfer 
learning, a pre-trained model is selected and re-trained on the new problem. 
We used a pre-trained CNN-based model using the ImageNet database54, which 
contains 1,000 image categories including fauna, flora, artificial elements and other 
features, with a learning rate of 0.001 and a decay factor of 16 every 30 epochs. As 
an optimization algorithm, we used RMSProp with momentum and decay of 0.9, 
and epsilon of 0.1.

Once the CNN-based model was trained, we used it to classify the 94,352 
0.5 ha plots described above as forest/non-forest. The CNN-based model analyses 
each image and outputs two probability values (with their respective confidence 
intervals), one for the forest class and the other for the non-forest class. To ensure 
the highest accuracy of the classification (assessed as described below), we 
removed all plots that were classified by the CNN model with a probability lower 
than 99%, as well as all plots that had a vegetation height lower than 5 m in the 
Global Vegetation Height dataset28. By doing so, plots with large shrubs would not 
be counted as forests. Hence, the final dataset used for further analyses contained 
16,739 plots with a wide representation along the global drylands (hyper-arid 
n = 702, arid n = 2,883, semi-arid n = 8,166 and dry sub-humid areas n = 4,988) 
(Supplementary Data 2 and Fig. 1).

Assessing the accuracy of the CNN-based model. To assess the accuracy of the 
CNN-based model classification of the 94,352 0.5 ha plots of our dataset into 
forests and non-forests, we randomly selected 705 of these plots and manually 
checked whether the model properly classified them using Google Earth. These 
validation plots were selected in a stratified way across the global drylands 

considering: (1) four aridity levels: hyper-arid (AI < 0.05), arid (0.05 ≤ AI < 0.2), 
semi-arid (0.2 ≤ AI < 0.5) and dry sub-humid (0.5 ≤ AI < 0.65); (2) four tree cover 
levels55: non-forest (<10%), open forest (10–40%), closed forest (41–65%) and 
dense forest (66–100%); and (3) 12 regions13: Northern Africa, Horn of Africa, 
the Sahel, Southern Africa, North America, South America (east), South America 
(west), Central Asia, Southwest Asia, Europe and Russia, Middle East, and Oceania 
(Supplementary Table 2). For each combination of aridity level, cover level and 
region, we randomly selected five images so that the potential number of images 
would be 4 × 4× 12 × 5 = 960; however, some strata combinations did not exist. 
Thus, the total number of images used was 705. The accuracy metrics used were 
Precision, Recall and the F1-measure (Supplementary Table 3). The F1-measure 
is an overall score that considers both Precision and Recall, and is preferable to 
simpler methods (F1-measure values close to 1 are better).

Assessing the drivers of current forest distribution. We used variation 
partitioning56 to quantify the relative importance of bioclimatic variables at 
different periods and environmental drivers (Supplementary Table 4) as predictors 
of the 16,739 forest/non-forest plots previously classified using the CNN model. 
This method is specifically recommended for dealing with multicollinearity 
because it partitions the variance in a given response variable that is attributed to 
a particular group of predictors from that variance shared among all predictors. 
In particular, this analysis provides insights into whether climatic variables from 
current and mid-Holocene periods can explain a unique portion of the variance 
that is not explained by climate in other periods56. Variation partitioning analyses 
were conducted with the R package ‘Vegan’57.

Importance of the drivers of current forest distribution. We conducted a 
random forest permutation analysis58 to identify the main predictors of the 16,739 
forest/non-forest plots previously classified using the CNN model. Contrary to the 
variation partitioning model described above, random forest analysis allowed us 
to identify the most important drivers of forest distribution among 19 bioclimatic 
variables23 from the different climatic periods studied and other environmental 
drivers. This method is a novel machine-learning algorithm that extends standard 
classification and regression tree methods by creating a collection of classification 
trees with binary divisions. The importance of each predictor variable is 
determined by evaluating the decrease in prediction accuracy when the data for 
that predictor are randomly permuted. This decrease is averaged over all trees 
to produce the final measure of importance. This accuracy importance measure 
was computed for each tree and averaged over the forest (999 trees). Unlike 
multimodel inference using linear regressions or regression tree analyses, random 
forest analysis alleviates multicollinearity problems in multivariate analyses by 
building bagged tree ensembles and including a random subset of features for each 
tree (999 trees).

Predicting the extent and distribution of dryland forests. To quantify the 
global extent and current distribution of dryland forests, we used a random 
forest regression analysis59 and coupled information on past climates and aquifer 
trends with other key environmental predictors (for example, albedo, pH, water 
thickness, elevation, precipitation of warmest quarter in the current climate, slope, 
soil moisture, precipitation of driest quarter in the mid-Holocene, precipitation of 
coldest quarter in the mid-Holocene, mean diurnal range in the current climate; 
Supplementary Tables 1 and 4) that were most important in the permutation 
analysis58, identifying the main predictors of dryland forest at the 16,739 locations 
identified by the CNN-based model. This model was built by finding the set of 
covariate combinations that most robustly predict the training samples and 999 
trees. The quality of the classification was tested and validated using a k-fold 
cross-validation method60, where k models (k = 5) were trained from k subsets 
of the original data and tested on k subsets of the remaining independent data 
(total number of plots divided by k). By combining the k iterations, we compared 
the original full dataset with the full set of the remaining independent data. The 
modelling approach was then validated by returning the predicted values (x axis) 
vs the observed values (y axis), following ref. 61. The model had a high predictive 
power (R2 = 0.89; Supplementary Fig. 2) and the validation of the k-fold cross 
revealed that our model explained 71% of the variation in forest extent without bias.

To obtain the extent of forests across global drylands, we calculated a map 
of forest/non-forest areas considering forest as those areas with a probability of 
being a forest of >50% (as provided by the random forest regression analysis). To 
provide realistic numbers, we eliminated all areas with croplands in at least 60% 
of the surface and small-scale cultivation mosaics, as well as urban and built-up 
lands with at least 30% of the surface being impervious (including buildings and 
asphalt) as identified in the global Land Cover Type by Annual International 
Geosphere-Biosphere Programme (IGBP)26 classification from MOD12Q1 v.6 by 
MODIS/Terra satellite sensor62.

Future projections of forest extent in drylands. To calculate future estimates of 
dryland forest extent globally, we reran our original model, keeping the variables 
elevation, slope, precipitation of driest quarter in mid-Holocene and precipitation 
of coldest quarter in mid-Holocene while updating the bioclimatic variables 
precipitation of warmest quarter and mean diurnal range using the estimates 
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provided by the MIROC6 global climate model63. To generate more reasonable 
future scenarios63, we chose the combination of three SSP and RCP scenarios: 
1–2.6, 3–7.0 and 5–8.5 from the Coupled Model Intercomparison Project Phase 5  
(CMIP5) over the period 2081–2100. In addition, and to obtain a more realistic 
extent of dryland forests, we forecasted the extent of agricultural and urban 
land uses in the same three scenarios using estimations from the MIROC global 
climate model27. SSP1 is a sustainability scenario with low population growth, 
high economic growth, high levels of education, good governance, a globalized 
society, international cooperation, technological development and environmental 
awareness. Under these assumptions, this scenario represents low levels of 
mitigation and adaptation challenges. SSP3 is a fragmentation scenario with high 
population growth and low economic development, lower levels of education and 
a regionalized society with low environmental awareness, thus representing a high 
level of adaptation and mitigation challenges. SSP5 scenario assumes a very high 
dependence on fossil fuels, low population growth, high economic growth and 
high human development, thus representing a high level of mitigation challenge. 
The RCP2.6, RCP7.0 and RCP8.5 scenarios consider lower, medium and high 
greenhouse gas emission rates (see ref. 64 for details).

Uncertainty map. To represent the uncertainty of our predictions of dryland forest 
extent (Fig. 2), we used the standard deviation of the predictions obtained in the 
5-fold cross-validation60 (see ‘Predicting the extent and distribution of dryland 
forests’ above). By stacking the predictions of forest extent, we obtained the mean 
of the probabilities to determine the extent of dryland forest and its standard 
deviation among the five predictive models used. In summary, the standard 
deviation per pixel represents the confidence of the model in space (Extended Data 
Fig. 3). The higher values of this metric, the higher the uncertainty and vice versa.

Consensus and discrepancies between forests areas. We used a simple approach 
to quantify and locate the consensus between forest maps created by considering 
climate legacies and aquifer trends and the forest map created by considering only 
the current climate. The forest consensus is calculated by area Ai, which identifies 
the i-th pixels of the forest map considering climate legacies and aquifer trends 
(Forest A), and area Bj, which identifies the j-th pixels of the forest map without 
considering climate legacies and aquifer trends (Forest B). Then we have the sets 
of forest areas A = (ai: i = 1, 2,…, m) and B = (bj: j = 1, 2,…, n). Here, the subscripts 
i and j are sequential numbers for the pixels of Forest A and Forest B, respectively. 
m and n indicate the total numbers of the pixels of both forest maps. Finally, the 
corresponding sets of areas of forest A and forest B intersect, obtaining a consensus 
C between Forest A and Forest B (equation 1).

Cij = areaAi ∩ areaBj (1)

where Cij is the area intersected between the area of map Forest A (areaAi) and the 
area of map Forest B (areaBj).

This approach generates three types of areas—the intersection of both  
(Forest A and B) and the exclusive area for each forest map (Fig. 3).

Palaeo-pollen analysis. To check whether trees existed in the mid-Holocene in 
the locations where dryland forests exist today, we explored data from those sites 
that are forests today included in the LegacyPollen v.136 database, a harmonization 
of palaeo-pollen databases including a total of 1,002 harmonized taxon names. It 
integrates the Neotoma palaeoecology database (https://www.neotomadb.org/),  
with additional data65,66. Age data were obtained according to the newly 
established LegacyAge 1.0 framework67 that includes the mid-Holocene period 
(5,000–7,000 BP). First, we identified all locations from the LegacyPollen v.1 
database that are in areas of current dryland forests. Second, from this subset of 
dryland locations we identified those pollen samples coming from trees using the 
GlobalTreeSearch v.1.5 database68, which contains the names of 60,000 tree species. 
Finally, we summed the percentages of each of the tree pollen samples (n = 1,121 
at 119 sites) and calculated how many samples have 5% or more tree pollen in the 
mid-Holocene period (Extended Data Fig. 5).

Groundwater balance in forest areas. To identify the extent of forest areas growing 
over declining aquifers, we calculated the balance (2002–2017) of the accumulated 
annual equivalent water height (water thickness expressed in cm yr−1) estimated 
from GRACE49, which has been successfully used to monitor the evolution of the 
piezometric level of large aquifers on the basis of microgravimetric differences24 
(Extended Data Fig. 2). The result of summing monthly values from 2002 to 2017 
was classified into three categories: declining (aquifers showing a decrease in their 
piezometric levels), stable equilibrium (aquifers with unchanged piezometric levels) 
and increasing (aquifers showing an increase in their piezometric levels).

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data generated or analysed during this study, which support the maps  
within this paper and other findings of this study, are available from Figshare at 
https://doi.org/10.6084/m9.figshare.13635212.

Code availability
The CNN-based code for the classification of forest/non-forest described in the 
Methods is freely available at https://github.com/EGuirado/CNN-Forest-Drylands

Received: 15 March 2021; Accepted: 15 June 2022;  
Published: xx xx xxxx

references
 1. Middleton, N., Stringer, L., Goudie, A., & Thomas, D. The Forgotten Billion: 

MDG Achievement in the Drylands (UNDP United Nations Convention to 
Combat Desertification, 2011).

 2. Soong, J. L., Phillips, C. L., Ledna, C., Koven, C. D. & Torn, M. S. CMIP5 
models predict rapid and deep soil warming over the 21st century. J. Geophys. 
Res. 125, e2019JG005266 (2020).

 3. Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland 
expansion under climate change. Nat. Clim. Change 6, 166–171 (2016).

 4. Williams, A. P. et al. Large contribution from anthropogenic warming to an 
emerging North American megadrought. Science 368, 314–318 (2020).

 5. Schlaepfer, D. et al. Climate change reduces extent of temperate drylands and 
intensifies drought in deep soils. Nat. Commun. 8, 14196 (2017).

 6. Jiang, H. in The End of Desertification? (eds Behnke, R. & Mortimore, M.) 
513–536 (Springer, 2016).

 7. Gadzama, N. M. Attenuation of the effects of desertification through 
sustainable development of Great Green Wall in the Sahel of Africa. World J. 
Sci. Technol. Sustain. Dev. 14, 279–289 (2017).

 8. United Nations Decade on Restoration (accessed January 2021); https://www.
decadeonrestoration.org/

 9. Ellison, D. et al. Trees, forests and water: cool insights for a hot world. Glob. 
Environ. Change 43, 51–61 (2017).

 10. Feng, X. et al. Revegetation in China’s Loess Plateau is approaching 
sustainable water resource limits. Nat. Clim. Change 6, 1019–1022 (2016).

 11. Megdal, S. B. Transboundary groundwater resources: sustainable management 
and conflict resolution. Groundwater 55, 701–702 (2017).

 12. Jarvis, W.T. in Advances in Groundwater Governance (eds Villholth, K. G. 
et al.) 177–192 (CRC Press, 2017).

 13. Bastin, J.-F. et al. The extent of forest in dryland biomes. Science 356, 
635–638 (2017).

 14. Brandt, M. et al. An unexpectedly large count of trees in the West African 
Sahara and Sahel. Nature 587, 78–82 (2020).

 15. Mbow, C. The Great Green Wall in the Sahel. Oxf. Res. Encycl. Clim. Sci. 
https://doi.org/10.1093/acrefore/9780190228620.013.559 (2017).

 16. Petrie, M. D. et al. Climate change may restrict dryland forest regeneration in 
the 21st century. Ecology 98, 1548–1559 (2017).

 17. Liu, S., Jiang, D. & Lang, X. Mid-Holocene drylands: a multi-model analysis 
using Paleoclimate Modelling Intercomparison Project Phase III (PMIP3) 
simulations. Holocene 29, 1425–1438 (2019).

 18. Delgado-Baquerizo, M. et al. Palaeoclimate explains a unique proportion of 
the global variation in soil bacterial communities. Nat. Ecol. Evol. 1, 
1339–1347 (2017).

 19. Delgado-Baquerizo, M. et al. Effects of climate legacies on above- and 
belowground community assembly. Glob. Change Biol. 24, 4330–4339 (2018).

 20. Hoelzmann, P. et al. Mid-Holocene land-surface conditions in northern 
Africa and the Arabian Peninsula: a data set for the analysis of biogeophysical 
feedbacks in the climate system. Glob. Biogeochem. Cycles 12, 35–51 (1998).

 21. Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table 
depth. Science 339, 940–943 (2013).

 22. Smettem, K. R. J., Waring, R. H., Callow, J. N., Wilson, M. & Mu, Q. 
Satellite-derived estimates of forest leaf area index in southwest Western 
Australia are not tightly coupled to interannual variations in rainfall: 
implications for groundwater decline in a drying climate. Glob. Change Biol. 
19, 2401–2412 (2013).

 23. Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate 
surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

 24. Schmidt, R. et al. GRACE observations of changes in continental water 
storage. Glob. Planet. Change 50, 112–126 (2006).

 25. Hengl, T. et al. SoilGrids250m: global gridded soil information based on 
machine learning. PLoS ONE 12, e0169748 (2017).

 26. Friedl, M. A. et al. ISLSCP II MODIS (Collection 4) IGBP Land Cover, 
2000–2001 (ORNL DAAC, Oak Ridge, TN, USA, 2010); https://doi.
org/10.3334/ORNLDAAC/968

 27. Chen, M. et al. Global land use for 2015–2100 at 0.05° resolution  
under diverse socioeconomic and climate scenarios. Sci. Data 7,  
320 (2020).

 28. National Centre for Earth Observation & Los, S.O. Global Vegetation Height 
Frequency Distributions from the ICESAT GLAS instrument produced as part 
of the National Centre for Earth Observation (NCEO) (NERC Earth 
Observation Data Centre, accessed 10 December 2020); http://catalogue.ceda.
ac.uk/uuid/85e7d70a74244c73b71446940e05cde6

NATurE PlANTS | www.nature.com/natureplants

https://www.neotomadb.org/
https://doi.org/10.6084/m9.figshare.13635212
https://github.com/EGuirado/CNN-Forest-Drylands
https://www.decadeonrestoration.org/
https://www.decadeonrestoration.org/
https://doi.org/10.1093/acrefore/9780190228620.013.559
https://doi.org/10.3334/ORNLDAAC/968
https://doi.org/10.3334/ORNLDAAC/968
http://catalogue.ceda.ac.uk/uuid/85e7d70a74244c73b71446940e05cde6
http://catalogue.ceda.ac.uk/uuid/85e7d70a74244c73b71446940e05cde6
http://www.nature.com/natureplants


Letters NaturE PlaNts

 29. Bastin, J.-F. et al. The global tree restoration potential. Science 365,  
76–79 (2019).

 30. Cherlet, M. et al. World Atlas of Desertification: Rethinking Land Degradation 
and Sustainable Land Management (Publications Office of the European 
Union, 2018).

 31. Ganopolski, A., Kubatzki, C., Claussen, M., Brovkin, V. & Petoukhov, V. The 
influence of vegetation-atmosphere-ocean interaction on climate during the 
mid-holocene. Science 280, 1916–1919 (1998).

 32. Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover 
change. Science 342, 850–853 (2013).

 33. Scheffer, M. Tipping Points (Princeton Univ. Press, 2009).
 34. Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 

787–790 (2020).
 35. Runyan, C. W. & D’Odorico, P. Global Deforestation (Cambridge Univ. Press, 

2016).
 36. Herzschuh, U. et al. Global taxonomically harmonized pollen data set for Late 

Quaternary with revised chronologies (LegacyPollen 1.0). PANGAEA https://
doi.org/10.1594/PANGAEA.929773 (2021).

 37. Staal, A. et al. Hysteresis of tropical forests in the 21st century. Nat. Commun. 
11, 4978 (2020).

 38. Belsky, A. J. et al. The effects of trees on their physical, chemical and 
biological environments in a semi-arid savanna in Kenya. J. Appl. Ecol. 26, 
1005–1024 (1989).

 39. Li, C. et al. Drivers and impacts of changes in China’s drylands. Nat. Rev. 
Earth Environ. 2, 858–873 (2021).

 40. Tatebe, H. et al. Description and basic evaluation of simulated mean state, 
internal variability, and climate sensitivity in MIROC6. Geosci. Model Dev. 12, 
2727–2765 (2019).

 41. Trees, Forests and Land Use in Drylands: the First Global Assessment. Full 
Report (FAO, 2019).

 42. Diallo, H. A. in The Future of Drylands (eds Lee, C. & Schaaf, T.) 13–16 
(Springer, 2008).

 43. A Spatial Analysis Approach to the Global Delineation of Dryland Areas of 
Relevance to the CBD Programme of Work on Dry and Subhumid Lands 
(UNEP-WCMC, 2014).

 44. Abatzoglou, J. et al. TerraClimate, a high-resolution global dataset of  
monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 
170191 (2018).

 45. Tachikawa, T., Hato, M., Kaku, M. & Iwasaki, A. Characteristics of ASTER 
GDEM version 2. IEEE Int. Geosci. Remote Sens. Symp. Proc. https://doi.
org/10.1109/igarss.2011.6050017 (2011).

 46. Alibakhshi, S., Crowther, T. W. & Naimi, B. Land surface black-sky albedo at 
a fixed solar zenith angle and its relation to forest structure during peak 
growing season based on remote sensing data. Data Brief. 31, 105720 (2020).

 47. Hamazaki, T. Advanced land observation satellite (ALOS). 5 Outline of ALOS 
satellite system. J. Jpn Soc. Photogramm. Remote Sens. 38, 25–26 (1999).

 48. Mu, Q., Zhao, M., & Running, S. W. Improvements to a MODIS global 
terrestrial evapotranspiration algorithm. Remote Sens. Environ. 115, 
1781–1800 (2011).https://doi.org/10.1016/j.rse.2011.02.019

 49. Zlotnicki, V., Bettadpur, S., Landerer, F. W. & Watkins, M. M. in Encyclopedia 
of Sustainability Science and Technology (ed. Meyers, R. A.) 4563–4584 
(Springer, 2012).https://doi.org/10.1007/978-1-4419-0851-3_745

 50. Schepaschenko, D. et al. Comment on ‘The extent of forest in dryland 
biomes’. Science 358, 6362 (2017).

 51. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521,  
436–444 (2015).

 52. Cheng, G., Han, J. & Lu, X. Remote sensing image scene classification: 
benchmark and state of the art. Proc. IEEE 105, 1865–1883 (2017).

 53. Xia, X., Xu, C. & Nan, B. Inception-v3 for flower classification. In Proc. 2nd 
International Conference on Image, Vision and Computing (ICIVC) 783–787 
(IEEE, 2017).

 54. Fei-Fei, L., Deng, J. & Li, K. ImageNet: constructing a large-scale image 
database. J. Vis. 9, 1037 (2010).

 55. Guirado, E. et al. Tree cover estimation in global drylands from space using 
deep learning. Remote Sens. 12, 343 (2020).

 56. Legendre, P., Borcard, D. & Roberts, D. W. Variation partitioning involving 
orthogonal spatial eigenfunction submodels. Ecology 93, 1234–1240 (2012).

 57. Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. 
Sci. 14, 927–930 (2003).

 58. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
 59. Lahouar, A. & Slama, J. B. H. Day-ahead load forecast using random forest 

and expert input selection. Energy Convers. Manage. 103, 1040–1051 (2015).

 60. Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation 
and model selection. IJCAI 14, 1137–1145 (1995).

 61. Piñeiro, G., Perelman, S., Guerschman, J. P. & Paruelo, J. M. How to evaluate 
models: observed vs. predicted or predicted vs. observed? Ecol. Model. 216, 
316–322 (2008).

 62. Friedl, M. & Sulla-Menashe, D. MCD12Q1 MODIS/Terra+Aqua Land Cover 
Type Yearly L3 Global 500m SIN Grid V006 (NASA EOSDIS Land Processes 
DAAC, 2019); https://doi.org/10.5067/MODIS/MCD12Q1.006

 63. The CMIP6 landscape. Nat. Clim. Change 9, 727 (2019).
 64. Meinshausen, M. et al. The RCP greenhouse gas concentrations and their 

extensions from 1765 to 2300. Clim. Change 109.1, 213–241 (2011).
 65. Cao, X. et al. A taxonomically harmonized and temporally standardized fossil 

pollen dataset from Siberia covering the last 40 kyr. Earth Syst. Sci. Data 12, 
119–135 (2020).

 66. Cao, X. et al. A late Quaternary pollen dataset from eastern continental Asia 
for vegetation and climate reconstructions: set up and evaluation. Rev. 
Palaeobot. Palynol. 194, 21–37 (2013).

 67. Li, C. et al. Harmonized chronologies of a global late Quaternary pollen 
dataset (LegacyAge 1.0). PANGAEA https://doi.org/10.1594/PANGAEA. 
933132 (2021).

 68. GlobalTreeSearch Online Database (Botanic Gardens Conservation 
International, UK, accessed 20 January 2022); https://tools.bgci.org/global_
tree_search.php

Acknowledgements
We thank M. Berdugo for advice on the alternative stable states and hysteresis section, 
and B. M. Benito for advise on the biogeographical analysis of the paleopollen databases. 
This research was funded by the European Research Council (ERC Grant agreement 
647038 (BIODESERT)) and Generalitat Valenciana (CIDEGENT/2018/041). E.G. 
was supported by the Consellería de Educación, Cultura y Deporte de la Generalitat 
Valenciana, and the European Social Fund (APOSTD/2021/188). D.A-S. was partially 
supported by DETECTOR (grant no. A-RNM-256-UGR18, Universidad de Granada/
FEDER), LifeWatch SmartEcoMountains (grant no. LifeWatch-2019-10-UGR-01, 
Ministerio de Ciencia e Innovación/Universidad de Granada/FEDER), RESISTE (grant 
no. P18-RT-1927, Consejería de Economía, Conocimiento y Universidad from the Junta 
de Andalucía/FEDER) and EBV–ScaleUp project (funded by Google Earth Engine and 
the Group on Earth Observations). M.D-B. acknowledges support from the Spanish 
Ministry of Science and Innovation (for the I+D+i project PID2020-115813RA-I00 
funded by MCIN/AEI/10.13039/501100011033), and from a project of the Fondo Europeo 
de Desarrollo Regional (FEDER) and the Consejería de Transformación Económica, 
Industria, Conocimiento y Universidades of the Junta de Andalucía (FEDER Andalucía 
2014-2020 Objetivo temático ‘01 - Refuerzo de la investigación, el desarrollo tecnológico 
y la innovación’) associated with the research project P20_00879 (ANDABIOMA). S.T. 
was supported by DeepL-ISCO (grant no. A-TIC-458-UGR18, Ministerio de Ciencia e 
Innovación/FEDER), BigDDL-CET (grant no. P18-FR-4961, Proyectos I+D+i Junta de 
Andalucia 2018) and LifeWatch SmartEcoMountains.

Author contributions
E.G., M.D.-B. and F.T.M. developed the original idea of the analyses presented in the 
manuscript. E.G and D.A.-S. developed the global survey. Artificial intelligence and 
remote sensing analyses were done by E.G. and S.T. Statistical modelling, mapping and 
data interpretations were done by E.G. and M.D-B. The manuscript was written by E.G., 
F.T.M. and M.D.-B., with contributions from all co-authors.

Competing interests
The authors declare no competing interests

Additional information
Extended data is available for this paper at https://doi.org/10.1038/s41477-022-01198-8.

Supplementary information The online version contains supplementary material 
available at https://doi.org/10.1038/s41477-022-01198-8.

Correspondence and requests for materials should be addressed to Emilio Guirado.

Peer review information Nature Plants thanks Jean-François Bastin and the other, 
anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2022

NATurE PlANTS | www.nature.com/natureplants

https://doi.org/10.1594/PANGAEA.929773
https://doi.org/10.1594/PANGAEA.929773
https://doi.org/10.1109/igarss.2011.6050017
https://doi.org/10.1109/igarss.2011.6050017
https://doi.org/10.1016/j.rse.2011.02.019
https://doi.org/10.1007/978-1-4419-0851-3_745
https://doi.org/10.5067/MODIS/MCD12Q1.006
https://doi.org/10.1594/PANGAEA.933132
https://doi.org/10.1594/PANGAEA.933132
https://tools.bgci.org/global_tree_search.php
https://tools.bgci.org/global_tree_search.php
https://doi.org/10.1038/s41477-022-01198-8
https://doi.org/10.1038/s41477-022-01198-8
http://www.nature.com/reprints
http://www.nature.com/natureplants


LettersNaturE PlaNts LettersNaturE PlaNts

Extended Data Fig. 1 | legacies in annual precipitation across global drylands. The bar graphs show the sum of the annual precipitation legacy 
(precipitation from 6000 years before present minus current precipitation) in dam3 for each aridity level.
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Extended Data Fig. 2 | Trends (2002-2017) of aquifers located beneath forest areas in drylands.
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Extended Data Fig. 3 | uncertainty map of the current extent of dryland forests. Data based on the standard deviation of predictions obtained from the 
5-fold cross-validation (see Methods section).
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Extended Data Fig. 4 | Comparison of our estimates of forest areas in drylands with recent estimates from the literature15,36.
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Extended Data Fig. 5 | results of the analyses of pollen samples of mid-Holocene tree species from the legacyPollen v.1 database42. a) Spatial distribution 
of the studied mid-Holocene pollen samples (n=1121 at 119 sites) overlapping with current dryland forest areas (Fig. 2). b) Frequency histogram of the 
percentage of tree species pollen and its median represented as a dashed vertical line found in the samples per zone. c) Percentage of arboreal pollen found 
in the samples above 5% in pie charts (top) and Spearman-based correlation of the percentage of arboreal pollen with the aridity index (bottom). Significant 
in Europe (p-value < 2.2e-16), North America East (p-value = 2.3e-5) and North America West (p-value = 9.6e-12). Shades surrounding the lines represent 
95% confidence interval.
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Extended Data Fig. 6 | Future changes (potential gains and losses) in dryland forest extent. Data for the 2081-2100 time period according to Shared 
Socio-economic Pathways (SSP) and representative concentration pathways (RCP) scenarios 1–2.6, 3–7.0 and 5–8.5. Results represented in the map are 
from the SSP5-RCP8.5 scenarios (see Methods for details).
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Study description We first compiled an updated, globally consistent, and accurate dataset of precise locations of forest and non-forest plots. Based on 
the valuable information from the 213,795 0.5-ha plots provided by the Global Drylands Assessment. We selected 94,352 plots 
where very high-resolution Google Earth images. Then, the images of these selected plots were automatically classified into forest 
and non-forest using a CNN-based model. 
 
Second, we calculate the variables important for the distribution of forests in drylands. We then created a map of dryland forests for 
the present and projected future.  
 
Finally, with these maps we were able to obtain areas of special interest for the restoration of these ecosystems. 

Research sample Using remote sensing data and artificial intelligence (deep learning), we quantified and mapped the extent of forests in global 
drylands considering past (Mid-Holocene) and present climate and other environmental predictors (e.g. aquifer trend, albedo, 
evapotranspiration, slope, soil moisture, elevation, PH, soil organic carbon, soil texture, soil nitrogen). In addition, current and future 
considerations for forest restoration in drylands are offered. 

Sampling strategy A total of 94,352 plots were selected with very high resolution Google Earth imagery from a systematic grid of 213,795 0.5 ha plots 
provided by the Global Dryland Assessment.

Data collection The data were extracted from freely available databases. The new forest and non-forest plot classification data are available from 
their respective publicly available in the supplementary data. 

Timing and spatial scale Time scales included climatic and Mid-Holocene paleo-pollen data. Climatic, environmental and soil data from the present day, and 
climatic and land use data from the year 2081-2100.

Data exclusions We do not exclude any data.

Reproducibility All results can be reproduced, as all data associated with the results are freely available.

Randomization The quality of the classification was tested and validated using a k-fold cross validation method, where k models (k=5) were trained 
from k subsets of the original data and tested on k subsets of the remaining independent data (total number of plots divided by k).

Blinding Blinding was not used in our analyses. Not applicable.
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